Introduction to networking Laura Perret – University of Neuchâtel

Educational Course on DICOM-RT 13th June 2003

Outline

Computer network or distributed system
Why are networks useful ?
Client/server and peer-to-peer models
Layers model (*network architecture*)
TCP / IP
How HTTP works ?

Computer network

- Collection of autonomous interconnected computers.
- Hardware with operating system, like Windows, Unix, MacOS, etc.
- Example : computers in a company
- Internet is not exactly a computer network but a network of networks.

Distributed system

Collection of independent computers appearing to its users as a single coherent system.

Software system built on top of a network.
Example : World Wide Web

Why are networks useful?

Business applications
Home applications
Mobile users

Business applications

Resource sharing e.g. shared printer, shared scanner, etc. Information sharing e.g. clients database, Medline, etc. Communication medium among people e.g. e-mail, videoconferencing, etc. E-business e.g. B2C, B2B, etc.

Home applications

Internet access

- Access to remote information e.g. online journals, newspapers, etc.
 Person-to-person communication e.g. e-mail, chat, etc.
 Interactive entertainment e.g. video on demand, game playing, etc.
 E-commerce
 - e.g. e-shopping, e-banking, etc.

Mobile users

Mobile people using notebook computers.
Portable office, like e-mail, access remote files, log on to remote machines, etc.
Mobile phones with WAP (*Wireless Application Protocol*) system.
Portable payment system for credit cards.
M-commerce (*mobile commerce*).

Client-server model

A server is a powerful computer containing data. It is housed and maintained by a system administrator.
A client is a common computer used to access remote data.
Clients and servers are connected by a network.

Client-server model

The client sends a request over the network to the server.
 The server gets the request, does the job and sends back a reply.
 Example : access a page on the Web

 Server : remote Web server
 Client : Web browser

Peer-to-peer model

- Every person can communicate with one or more other people.
- Example : Napster for music exchange
 - Members registered their songs lists in Napster database.
 - Users checked Napster database to find out who had the requested song and then got it directly from there.
 - Napster was shot down because it infringed copyright.

Use of computer networks

Monolithic view : one single huge program to manage all communications. Hard to create Too complex to be maintained Too many different programs Structured view : using different layers to manage all communications. General idea : divide and conquer

Layers model

- Networks are organized as a stack of levels or layers (network architecture).
- Each layer offers certain services to the upper layer.
- The layer n on host A communicates with the layer n on host B using the layer n protocol.
- A protocol is an agreement between communicating parties on how communication is to proceed.

Example

Layers model

TCP / IP

ARPANET (Advanced Research Projects) Agency Network) was a research network sponsored by the DoD (U.S. Department of Defence), 21/11/1969 UCLA-Stanford. It became TCP / IP (Transmission Control) Protocol / Internet Protocol) Reference Model in 1974. ARPANET used TCP / IP on 1/1/1983.

TCP / IP

The main goals were
Ability to connect multiple and heterogeneous computers and networks.
Ability to survive loss of subnet hardware.

TCP / IP layer model

Application	
Transport	
Internet	
Host-to-network	

Host-to-network layer

Main service : transfer data on physical medium
 LAN (*Local Area Network*)
 Ethernet is one implementation (R. Metcalfe, 1973, Xerox)

Internet layer

Main service : packet routing
 Permit packets to be sent into any network (*IP over everything*)
 IP (*Internet Protocol*) is the official packet format and protocol

Internet Protocol

- An IP number (also called IP address) identifies a machine on the network.
- A machine may host several applications. Each application is accessible via a communication port.
- To send data to an application running on a specific machine, the IP number and the application port number are required.
- A socket is a pair <IP number, port number>

Transport layer

Main services : rearrange packets in original order and error control
 TCP (*Transmission Control Protocol*) is a reliable connection-oriented protocol

Application layer

Main service : user applications
 High-level protocols

 FTP (*File Transfer Protocol*)
 HTTP (*HyperText Transfer Protocol*)
 SMTP (*Simple Mail Transfer Protocol*)
 Etc.

HTTP

The Web (World Wide Web or www) was invented at CERN in 1989.
 The Web is a huge distributed system with millions of clients and servers based on a simple interface (NCSA Mosaic 1993).
 HTTP (HyperText Transfer Protocol) is a protocol for fetching pages on the Web.

The URL (Uniform Resource Locator) <u>http://www.unine.ch</u> is typed in the browser.

- Ann would like to call Bob but doesn't know his phone number.
- The browser asks the DNS (Domain Name Service) for the IP address.
- Ann calls the directory service (111) to ask for Bob's phone number.

The DNS replies with 130.125.1.11
The directory service replies with +41 32 718 00 00
The browser makes a TCP connection to port 80 on 130.125.1.11
Ann dials the +41 32 718 00 00

The browser asks for file /console.asp
 Ann says « Hello Bob, are you coming for dinner tonight ? »

- The <u>www.unine.ch</u> server sends the file /console.asp
- Bob answers « Hi Ann, yes, I'm coming. »

 The TCP connection is released.
 When the conversation is over, Ann and Bob hang up and the connection is released.

The browser displays the received Web page.

Conclusion

TCP / IP will remain the standard for WAN (*Wide Area Network*).
Mobile and wireless (for LAN ?)
Security is still a major issue
Metcalfe's law : utility of a network Utility (N) = N², N = number of users

More on this topic ?

Computer Networks, A. Tanenbaum, Prentice Hall, 2003
Data and Computer Communications, W. Stallings, Prentice Hall, 2003
<u>http://www.vitels.ch/</u>
<u>http://courses.cs.vt.edu/~cs4254/</u>
<u>http://courses.cs.vt.edu/~cs5516/</u>